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The efficiency of MEMS-based time-periodic micro chaotic mixers is experimentally
and theoretically investigated in this study. A time-periodic flow perturbation was
realized using digitally controlled solenoid valves to activate a source and sink
alternately, acting together as a pair, with different driving frequencies. Working
fluids with and without fluorescent dye were used in the micromixing experiments.
The spatio-temporal variation of the mixing concentration during the mixing process
was characterized at different Strouhal numbers, ranging from 0.03 to 0.74, using
fluorescence microscopy. A simple kinematical model for the micromixer was used
to demonstrate the presence of chaotic mixing. Specific stretching rate, Lyapunov
exponent, and local bifurcation and Poincaré section analyses were used to identify
the emergence of chaos. Two different numerical methods were employed to verify
that the maximum Lyapunov exponent was positive in the proposed micromixer
model. A simplified analytical analysis of the effect of Strouhal number is presented.
Kolmogorov–Arnold–Mose (KAM) curves, which are mixing barriers, were also found
in Poincaré sections. From a comparative study of the experimental results and
theoretical analysis, a finite-time Lyapunov exponent (FTLE) was shown to be a
more practical mixing index than the classical Lyapunov exponent because the time
spent in mixing is the main concern in practical applications, such as bio-medical
diagnosis. In addition, the FTLE takes into account both fluid stretching in terms of
the stretching rate and fluid folding in terms of curvature.

1. Introduction
Micro-total-analysis systems (MicroTAS) and bio-micro-electromechanical systems

(bio-MEMS) have received much attention in industrial and academic research
institutions because of their potential use in a variety of biological applications
(Burns et al. 1998; Figeys & Pinto 2000; Stroock et al. 2002; Grayson et al. 2004;
Stone, Stroock & Ajdari 2004). Owing to their minute size and many other advantages,
these micro devices are very promising for manipulating, analysing and sensing ultra-
small amounts of bio-samples. Depending on the type of bio-molecules (e.g. DNA,
enzymes, antibodies) that are being handled, these devices must have the capability
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to provide efficient fluidic manipulations, such as fluid delivery, mixing, separation,
and filtration.

Mixing of fluids is an important fluidic manipulation for most bio-medical
applications. In polymer chain reaction (PCR), DNA hybridization or molecular
diagnosis of disease needs to bring molecules of various kinds close together in a
short time for fast and effective reactions. Mixing in conventional laboratories is
usually performed by either manually shaking and tapping the test tube followed by
centrifuging, or mixing using a stirrer (Evensen, Meldrum & Cunningham 1998).
However, these conventional mixing methods are difficult, if not impossible, to
implement in miniaturized systems. Therefore, the pursuit of novel mechanisms for
effective mixing is critical for the development of bio-MEMS devices.

Traditionally, turbulent enhancement has been the most effective process to achieve
efficient mixing. For example, Regenfuss et al. (1985) and Bökenkamp et al. (1998)
used turbulent jet and multiple T-shaped turbulent flows, respectively, to study fast
chemical reactions at millimetre-sized scales. However, it is much more difficult to
generate turbulence at microscales owing to the higher viscous dissipation at small
Reynolds numbers (Raynal & Gence 1997).

On the other hand, laminar mixing through molecular diffusion is usually too
slow to be practical in most cases. Miyake et al. (1993) designed a double-layered
micro-mixer, in which 400-micron-diameter nozzles were fabricated to provide micro-
plumes, which could increase the surface contact area for faster mixing. Evensen
et al. (1998) designed a mixer driven by a piezo-ceramic actuator such that fluids,
e.g. λ-DNA, were perturbed periodically in a glass capillary. They reported no
apparent shear breakage of the DNA after mixing by testing with agarose gel
electrophoresis. Bökenkamp et al. (1998) fabricated a silicon mixer for liquid-phase
chemical reactions over short durations of 110 ms. Volpert et al. (1999) reported on
an actively controlled micromixer using six branched microchannels perpendicular
to the main microchannel. Mixing inside the main microchannel was enhanced by
introducing periodic perturbations through the side microchannels. Their numerical
simulation showed that the effectiveness of this active micromixer increased if the
temporal waveforms of the perturbations are properly controlled. Unfortunately, they
did not report the mixing indices, such as the Lyapunov exponent (LE) and Poincaré
section, which are the most commonly used tools in the identification of chaos.
Okkels & Tabeling (2004) described the mixing in a simple cross-shaped micromixer
with time-periodic transverse flow in terms of a new phenomenon – spatial-temporal
resonance. A detailed review of micro mixers designed during recent years was
undertaken by Nguyen & Wu (2005). In particular, mixing by chaotic advection is
considered to be one of the most promising techniques for mixing in microfluidic
devices (Ottino & Wiggins 2004).

Aref was among the first researchers to use the term chaotic advection (Aref 1984) to
describe mixing achieved in a laminar flow at a low Reynolds number and to compare
this phenomenon with turbulent mixing (Aref 2002). It is well known that chaotic
mixing can occur at any Reynolds number and that it is the degree of the spatial-
temporal complexity of the flow that determines whether the advected particle paths
are chaotic, not the force balance in the momentum equation (Jones & Aref 1988).

In this paper we report on the fabrication and characterization of a time-periodic
micro chaotic mixer, which was studied under fluorescence video microscopy. A
two-dimensional kinematic model of the micro chaotic mixer (Niu & Lee 2003a)
was used to conduct a detailed parametric study of the mixing enhancement, using
different methods. Several techniques, including Poincaré section, Lyapunov exponent,
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Figure 1. Cross-sectional diagrams of the micro fabrication process flow for the micromixer:
(a) photolithography using SU-8 photoresist, (b) dummy wafer gluing, (c) DRIE etching,
(d) double-sided anodic bonding, and (e) barbed adapter gluing.

and local bifurcation analyses, were used to explore the existence of chaos. In addition,
a finite-time Lyapunov exponent (FTLE) (Pierrehumbert 1991; Muzzio, Swanson &
Ottino 1991; Ottino et al. 1992; Tang & Boozer 1996; Thiffeault 2004) was introduced
as a mixing index for the evaluation of the mixing performance of our micromixer.

2. Experimental apparatus and micromixing measuring techniques
2.1. Fabrication of the micromixer

The micromixers investigated in this study are continuous mixing systems that can
be easily integrated in line with other devices to form a fully functional lab-on-a-chip
system. We selected time-periodic pressure perturbations to initiate chaotic motions
in order to rapidly homogenize the initially non-uniformly distributed concentration
fields. The micromixer chips were fabricated at the UCLA Nanoelectronics Research
Facility using MEMS technology, including SU-8 photolithography, deep reactive
ion etching (DRIE), anodic bonding, as well as other micro-fabrication techniques.
Cross-sectional diagrams illustrating the fabrication process are shown in figure 1. The
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Figure 2. Schematic diagram of the micromixer.

micromixers were fabricated on a four-inch double-sided polished silicon wafer, using
the following sequence. First, the process was started by applying photolithography
with SU-8 photoresist (Microchem Corp, MA, USA) as the mask for DRIE (Model
SLR-770, PlasmaTherm, FL, USA) of the silicon. Second, a dummy silicon wafer
was glued to the back of the first wafer by applying AZ5214 photoresist at 120 ◦C
for about 5 minutes. The wafer was then etched through using the DRIE technique
with SU-8 photoresist as the mask. Third, the remaining SU-8 photoresist and the
dummy wafer were removed by rinsing three times consecutively in fresh strong
piranha solutions (H2SO4: H2O2 =1:1). Fourth, the device was sealed by attaching
the processed silicon wafer to a 1/8 in. thick Pyrex glass plate, using anodic bonding.
Six through-holes were drilled on the Pyrex glass (Model 8476K321, McMaster Inc.,
CA, USA) to provide the fluid inlets and outlet. A thin piece of Pyrex glass (∼200 µm,
Specialty Glass Products Inc., PA, USA) bonded on the other side of the mixer was
used as an optical window for flow visualization purposes. Finally, 1/16 in. barbed
tubing adapters (Model 5116K16, McMaster Inc.) were machined and glued to the
inlets/outlets on the thick glass layer in order to provide the necessary flow connection
through TygonTM tubing (Model 5554K91, McMaster Inc.).

As shown in figure 2, a micromixer with a 400 µm deep main channel width of
100 µm and two 50 µm wide branch channels was fabricated. The micromixer was
designed so that two streams of different fluids, controlled individually by two external
flow devices, could be directed through the two branch channels and merged in the
main channel. This will be described in more detail in the next section.

2.2. Experimental apparatus and characterization of the micromixer

The experimental set-up for both the operation and characterization of the micromixer
chip is shown in figure 3. Two digitally controlled syringe pumps (Model 44I/W,
Harvard Apparatus, MA, USA) were used to individually regulate the flow rates
of the two inlets into the main channel (figure 2). To clearly identify the mixing
enhancement, Rhodamine 6G fluorescent dye (Fisher Scientific, CA, USA) was used
to label the working fluid in one of the branch channels. As a result of the mixing, the
relative fluorescent intensity of the main channel fluid stream varied due to changes
in its local dye concentration; this was used as a quantitative measure of the mixing
efficiency.

In addition to the microflow visualization, it is useful to quantify the mixing
efficiency. There are many ways to evaluate mixing efficiency, e.g. the residence
time distribution (Levenspiel 1972), the distribution of striation thickness (Khakhar,
Rising & Ottino 1986), lobe dynamics (Wiggins 1992; Beigie, Leonard & Wiggins
1994), entropy (D’Alessandro, Dahlek & Mezic 1999) and a multiscale measure for
mixing – the Mix-Norm (Mathew, Mézic & Petzold 2005). Liu et al. (2000) evaluated
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Figure 3. Schematic diagram of the experimental setup for the micromixer characterization.

the mixing of a passive three-dimensional serpentine micromixer by considering the
uniformity of the intensity of the fluid flow inside the microchannel. The uniformity
was quantified by calculating the experimental mixing index IE by considering the
deviation of the pixel intensity C from its maximum intensity value in an image field
such as that shown in figure 4(b):

IE = 1 − 1

C

√∑
(C(x2) − C)2

N
, (1)

where N is the total number of pixels and C̄ is the averaged pixel intensity of the
concentration function of x2, C(x2),

C =
∑

C(x2)/N.

If ideal mixing takes place in the micromixer, the mixed concentration is uniform
and C is a constant; the mixing index IE should have a value of one since the
root-mean-square integral becomes zero. If there is no mixing between the two fluid
streams, C is a step-like function and the mixing index is equal to zero.

To set up the main channel flow, two digital syringe pumps, each equipped with
10 ml glass syringes (Fisher Scientific), were used to pump de-ionized (DI) water and
a DI water solution of Rhodamine 6G dye, respectively, into the two inlets of the
micromixer. As shown in figure 3, to activate the flow control, computer-interfaced
solenoid valves (three-way HDI Model LHDA 0531115H, The Lee Company, CT,
USA), which could be turned on and off at specified frequencies, were integrated with
the control ports of the micro mixer. The control signal for the solenoid valves had
a periodic square waveform with variable frequencies, generated by a PIO-12 digital
input/output card (Keithley Instruments Inc., OH, USA) interfaced to a personal
computer. When connected to a high-pressure source and/or a low-pressure sink,
these valves could be activated to provide pulsatile pressure perturbations to the
main channel flow at desired frequencies and amplitudes. The high-pressure source
was regulated by a compressed-air tank with a two-stage pressure regulator, while the
low-pressure sink was controlled by a rotary vane vacuum pump (Edwards E2M18).
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Figure 4. (a) Schematic of a simple cross-channel micromixer and (b) generation of a lobe-like
fold structure between the two fluids (glycerine with and without Rhodamine 6G dye) by
periodic pressure perturbation at the side channel at Re = 2.4 × 10−4 and f = 0.80 Hz.

To prevent air bubbles from getting into the microchannel, two transparent Plexiglas
reservoirs were added between the micromixer and the solenoid valves (figure 3).
Extra care was taken to ensure that the majority of the trapped air was collected
and removed inside these reservoirs. In order to adjust the strength of the source and
sink to achieve the desired perturbation, pinch-tight tube clamps (Model 5330K14,
McMaster Inc.) were used on the 1/16 in. diameter TygonTM tubing (Model 5554K91,
McMaster Inc.) connecting the vacuum pump and the compressed-air tank to the
two Plexiglas reservoirs.

2.3. Microflow visualization

An epi-fluorescence Olympus IX70 microscope was used to visualize the micromixing
flow. The fluorescent light emitted from the fluorescent dye-labelled liquid flow could
be efficiently separated from the light scattered from the channel walls and other
impurities in the testing liquids. The flow behaviour inside the main channels after
the two branch-flow streams merged was recorded on videotape using a CCD camera
(Model TM745, Pulnix Inc., CA, USA). The video was then digitized by a video
capture interface card (TARGA 1000, Truevision Inc., CA, USA) with the image resol-
ution of 648 × 486 pixels (NTSC) and analysed by using an in-house MatlabTM digital
image-processing program. The mixing enhancement could be further quantified by
examining the normalized fluorescence intensity distribution of the fluid across the
main channel at the AA cross-section as shown in figure 4(b) and using equation (1).

The micromixer was tested with two low-diffusivity working fluids consisting
of a glycerine (AC41098-5000, Fisher Scientific) water solution with and without
Rhodamine 6G dye. Without time-periodic perturbations in the mid-stream, the
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Figure 5. Pseudocolour enhanced micrographs showing the generation of stretching and
folding of the fluids (glycerine solution with and without Rhodamine 6G dye) in the micromixer
at different stages during one period (T = 1 s) at Re = 2.4 × 10–4 and St = 0.08.

downstream profile showed little change compared to its upstream counterpart. The
slight broadening of the concentration profile in the x2-direction could be attributed
to the molecular diffusion of the fluorescent dye. If the average velocity in the main
microchannel, controlled by a digital syringe pump, is V0, then the diffusion constant
of Rhodamine 6G, D, can be estimated by measuring the broadening width at the
downstream location x1 (Lee et al. 2000).

In figure 4(b), the micromixer with the time-periodic perturbation in the mid-stream
had a Strouhal number of 0.056 (frequency f = 0.80 Hz). Here, the Strouhal number
is defined as St = f Ws/V0, where V0 is the average velocity in the main microchannel,
f is the frequency of perturbations (which was varied) and Ws is the width of the
side channel. In an active micromixer, St represents the ratio between the residence
time of a species and the time period of its disturbance (Nguyen & Wu 2005). At
Re =2.4×10−4, the main channel in the micromixer showed a repetitive fluid interface
folding pattern immediately after the side channel, as shown in figure 4(b). This lobe-
like fold pattern greatly increased the surface of the contact area of the two fluids to
promote mixing. At the end of the downstream section, molecular diffusion gradually
blurred this lobe-like folding structure, signifying a more effective mixing process.

In addition, the controlled fluid interface pattern was examined using pressure
perturbations at different driving frequencies and amplitudes. At low frequencies and
amplitudes, the interface showed a strong wavy pattern. If the driving frequency
increased, the amplitude of the wavy pattern decreased accordingly. However, for the
same perturbation frequency, the folding level increased as the amplitude increased.
In § 4, we will examine numerically how a micromixer with time-period perturbations
in the side channels can cause ‘chaotic mixing’ by computing the Lyapunov exponent
and plotting a Poincaré section.

We recorded the periodic perturbation of the two fluids in the micromixer and
examined the evolution of the fluid interface during one complete period (T = 1 s),
as shown in figure 5. Pseudocolour was applied to these micrographs via digital
image-processing to enhance the interface between the two fluids. In the first three
frames (t = 0, 0.1T and 0.2T ), the fluids at the intersection of the main channel and side
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Figure 6. Time-averaged experimental mixing index as a function of the Strouhal number,
St, for the micromixer, averaged from 600 frames (30 s).

channel were pushed upward in the side channel (positive x2-direction). This created a
folding of the fluids. In the following frames, the stretched fluid blob was pulled in the
negative x2-direction. The fluid blob was also forced to move into the main channel,
following the main flow stream. Because the velocity profile in the main channel was
parabolic, the fluid blob was deformed non-uniformly across the main channel width,
resulting in fluid stretching. Under the time-periodic flow perturbations in the side
channel, the micromixer created a series of fluid stretching and folding patterns that
are essential for increasing the fluid interfaces, thus promoting good mixing.

Next, we adjusted the driving frequency of the micromixer to study the effect of
frequency on mixing efficiency. For each case, a 30 s video of the flow field at a
downstream location was recorded. The experimental mixing index IE for each frame
was calculated, and the time-averaged mixing index as a function of Strouhal number
is shown in figure 6. From this figure, the optimal mixing for this micromixer occurred
at a Strouhal number close to 0.25.

3. Modelling and analysis of the micro chaotic mixer
In order to gain a better understanding of how the micromixer works, a kinematical

model will be developed in this section. Lyapunov exponent, local bifurcation and
Poincaré section analyses will be applied to study the nonlinear dynamic behaviour
of this micromixer model.

3.1. Kinematic model for the micromixer

Since the flow velocity in our micromixer was extremely low (typically, the
Reynolds number �1), the Navier–Stokes equations can be linearized to equations
representative of Stokes’ flow. Under Stokes’ flow approximation, the velocity at
the intersection of the main and branch channels may be approximated as a linear
superposition of the main flow plus the perturbed flow. Note that although the
velocity field is linear, the governing equations for the fluid particle trajectory are
nonlinear. A detailed chaotic dynamic analysis will be discussed later in § 4.
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Figure 7. (a) The velocity fields in the micromixer model divided into Regions, I, II, III,
and IV, and (b) the generation of a lobe-like structure by the periodic perturbation of the
two-stream fluids to increase the surface contact area. X1 and X2 are the material coordinates
(Vp/V0 = 0.5, St = 0.637).

As shown in figure 7(a), the flow in the main channel, with a width Wm, was
from left to right, and that there was one side channel at the origin of the
coordinates with a width Ws . According to the local flow behaviour, we could divide
the velocity field into four regions: I, II, III, and IV, as shown in figure 7(a).
The velocity profiles, both in the main (Regions I and III) and side channels
(Region IV) far from the intersection, were assumed to be parabolic. The main flow
had a constant flow rate while the side channel carried a time-dependent component.
At the intersection between the side and main channels (Region II), the resultant
velocity was the linear sum of the two components from both channels. For Regions
I and III, there was only one non-zero velocity component in the x1-direction:

dx1

dt
= V0(1 − (X2/Wm)2),

dx2

dt
= 0 for Regions I and III, (2a)

where V0 is the maximum velocity in the main channel.
Note that X1 and X2 are the material coordinates. The motion x = x(X, t)denotes

the position vector x = (x1, x2) occupied by the material particle X = (X1, X2) at
time t(Eringen 1967) along the streamwise (x1) and the transverse directions (x2).
This notation is useful for computing deformation-rate tensors, the differential line
stretch, and the stretching rate for quantitative mixing analysis (Ottino 1989). In
the side channel far from the intersection, such as Region IV, we assumed that the
velocity was only in the x2-direction. The velocity amplitude in Region IV changed
periodically with respect to time at a driving frequency ω:

dx1

dt
= 0,

dx2

dt
= VP (1 − (X1/Ws)

2) cos(ω t) for Region IV, (2b)

where Vp is the maximum velocity amplitude in the side channel.
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The velocity field in Region II was also assumed to be the linear superposition of
the fields in Regions I and IV:

dx1

dt
= V0(1 − (X2/Wm)2),

dx2

dt
= VP (1 − (X1/Ws)

2) cos(ω t) for Region II. (2c)

Although this is an approximated velocity field, these assumptions are not expected
to affect the qualitative results substantially, as pointed out by Volpert et al. (1999)
in a similar geometry and by the CFD verification in our previous work (Lee
et al. 2000; Niu & Lee 2003a). Once the velocity field is prescribed, the particle
trajectories can be readily calculated by integrating the governing ordinary differential
equations. Note that the effect of diffusion has not been factored into our model
owing to its negligible contribution to the overall flow behaviour as was evident
from experimental observations. The distribution of a total of 24 000 colour-coded
particles moving in the micromixer (Vp/V0 = 0.5, St = 0.637), is shown in figure 7(b).
A time-periodic stretching and folding process can be clearly observed in this flow
pattern, consistent with the microflow visualization results using a low-diffusivity
working fluid (figure 4b).

The driving frequency, ω (= 2πf ), and the relative strength of the side-channel
perturbation, (Vp/V0), in the dynamical system equations are both important
parameters that govern the interface pattern of the two mixing fluid streams. If
V0 is fixed while Vp and ω are varied gradually in the simulation of the fluid interface,
the result will lead to very rich diversity of flow patterns. Figure 7(b) represents
the shape of a fluid interface released at the centre of the main channel upstream
from the channel intersection after passing through the mixing region (where the side
channel is located). At a small amplitude, the interface underwent oscillations as it
passed through the mixer. This is classified as the wavy regime. The wave amplitude
increases with the perturbing amplitude and leads to the so-called ‘strong waves’
regime. Finally, a chaotic-like regime appeared beyond the threshold amplitude, when
the wave periodically hit a corner of the channel intersection. A more detailed analysis
can be found in Tabeling et al. (2004).

The traditional infinite-time Lyapunov exponent, which indicates chaotic mixing, is
mathematically defined for fluid properties that are calculated at a time approaching
infinity, i.e. the side channels in the micromixer need to be repeated indefinitely.
Obviously this is not a useful quantity in practical microfluidic applications. The
governing equations for the micromixer, equation (2a–c), can be modified to allow for
infinite downstream side channels. This can be easily implemented in a microfluidic
device and in a computer program by assigning side cross channels with normalized
widths of 2 at x1 = 4n − 1 (n = 1, 2, 3, . . .). This approach has been successfully
implemented to simulate a micromixer with normalized channel dimensions. However,
in order to examine the sensitivity of the geometric design (main and side channel
widths) to the mixing, additional computer code was introduced for the velocity field
with a main channel width (Wm), side channel width (Ws), and distance between side
channels (pch) as follows:

1. If Abs(x2) � Wmn/2, ẋ1 = V0(1 − (x2/(Wm/2))2), otherwise ẋ1 = 0.
2. Set xp= pch* Integer part(x1/pch).
3. If x � (xp + Ws), Set xc = xp + Ws/2 and

ẋ2 = Vp(1 − [(x1 − xc)/(Ws/2)]2) cos(ω t).
4. If x > (xp + Ws), Set ẋ2 = 0.

Simulations of the deformation of two fluid blobs in the micromixer with periodic
side channels at different Strouhal numbers were conducted with the above modified
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Figure 8. Simulations of mixing of two fluid blobs in the time-periodic micromixer at different
driving frequencies at t*(=t/t0)=13.3 (t0 = d/V0,avg=3): (a) initial fluid blobs at t∗ =0;
(b) St = 0.24, t∗ = 13.3; (c) St = 0.32, t∗ = 13.3; and (d) St = 0.95, t∗ = 13.3.

model. As shown in figure 8, the original fluid blobs were transformed into much
smaller fluid segments at St = 0.32 than at St = 0.24 or 0.95. However, these types of
simulations were very time-consuming. It was impractical to conduct a comprehensive
investigation of mixing effectiveness. Therefore, the parametric study of the effect of
the Strouhal number on the mixing performance will be discussed using a different
approach in § 4.

3.2. Specific stretching rate as a measure of the mixing effectiveness:
an analytical solution

As we have discussed in previous sections, the surface contact area (fluid interface
or material line in two-dimensional flow) plays an important role in the mixing
process. The time-periodic forcing in the side channel greatly enhances the mixing
process by increasing the total contact area at the fluid interface. Therefore, one way
to characterize the mixing enhancement in a two-dimensional microflow field is to
calculate the increase of the individual fluid interface lines. However, as pointed out
by Franjione & Ottino (1987), direct numerical tracking of the interface presents
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formidable computational problems, even in simple two-dimensional chaotic flows.
Tracking a realistic three-dimensional flow would be even more challenging.

However, a Lyapunov exponent analysis has been shown to be an effective
alternative approach to characterizing the mixing effectiveness because the Lyapunov
exponent λi can be physically interpreted as the long-term average of the specific
stretching rate (Khakhar et al. 1986; Ottino 1989).

A dynamical system with n degrees of freedom has at most n different Lyapunov
exponents λi (i = 1, 2, . . . , n). If |dX | represents the length of an infinitesimal fluid
element vector with initial conditions dX around X and orientation M = dX/|dX |,
and its length at time t is |dx|, the Lyapunov exponents λi are defined as

λ i(X, M) = lim
t→∞|d X |→0

[
1

t
ln

(
|dx|
|dX |

)]
, (3)

where X and M = {Mi} are the position and orientation vectors of the initial fluid
element. From chaotic dynamics, it is well known that at least one Lyapunov exponent
in a chaotic system will be positive. The stretching efficiency e(X , M), also considered
as a theoretical mixing index (a normalized Lyapunov exponent; Ottino 1989), is
defined as

e(X, M) ≡ dijdijMiMj

(dijdij )1/2
, (4)

where iand j are the dummy indices for deformation-rate tensor (dij ) summation.
If a flow field can be described analytically, such as two-dimensional parabolic

channel flow, we can easily derive the theoretical mixing index, e(X , M). In practice,
it is more efficient to compute the line stretch first and then differentiate the line
stretch with respect to time. From a study of continuum mechanics (Eringen 1967),
the square of the line stretch s for an infinitesimal fluid element with an orientation
vector M is

s2 = CijMiMj , (5)

where Cij is the right Cauchy–Green strain tensor. This tensor can simply be found
by using the following formula:

C = FT F, (6)

where F = {∂xi/∂Xj } is the deformation gradient tensor.
For two-dimensional parabolic flow, the solution of the position of a fluid particle

as a function of its original position, X = (X1, X2), is

x1 = V0

(
1 − X2

2

)
t + X1, x2 = X2. (7)

Therefore, the corresponding right Cauchy–Green strain tensor is

C = FT F =

(
1 −2V0tX2

−2V0tX2 1 + 4V 2
0 t2X2

2

)
. (8)

The square of the line stretch for a fluid element with an original orientation vector
M = (M1, M2) is therefore

s2 = M2
1 + M2

2 − 4M1M2V0tX2 + 4(M2V0tX2)
2. (9)
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Differentiating equation (9) with respect to time and dividing by (dijdij )
1/2, we find

the theoretical mixing efficiency as follows:

e(X, M) =
1√

2X2V0

4(M2V0X2)
2t − 2M1M2V0X2

M2
1 + M2

2 − 4M1M2V0tX2 + 4(M2V0tX2)2

=
2
√

2M2
2X2V0t −

√
2M1M2

M2
1 + M2

2 − 4M1M2V0tX2 + 4(M2V0tX2)2
, (10)

where

{dij } =

(
0 −V0X2

−V0X2 0

)
, dij dij = 2d2

12 = 2(V0X2)
2.

For t= 0, e(X , M) can be simplified to

e(X, M) =
−

√
2M1M2

M2
1 + M2

2

. (11)

The maximum e(X , M) is obtained for a fluid line element with the following
orientation vector:

M1 =
−1√

2
, M2 =

1√
2
. (12)

This is consistent with a previous paper (Khakhar et al. 1986). As t → ∞, we find
that the mixing index, e(X , M), of the two-dimensional parabolic flow decreases as
1/t ,

e(X, M) → 2
√

2M2
2X2V0t

4(M2V0tX2)2
=

√
2

2V0X2t
∼ 1

t
. (13)

Therefore, two-dimensional parabolic channel flow without any perturbation does
not mix well. This gives us the mathematical foundation necessary to introduce an
external control to enhance mixing. Recently, complementary to our analysis of a
micromixer model, Voth, Haller & Gollub (2002) also used the Cauchy–Green strain
tensor to evaluate the finite-time Lyapunov exponent field and distribution of the
experimental data of a two-dimensional flow produced by density stratification and
time-periodic magnetic forcing. Obviously, this approach will be a very useful tool
for the comparative study of theory and experiment in chaotic mixing research.

3.3. Dimensionless temporal parameter for chaotic mixing

When considering chaotic mixing at the macro-scale level, the contribution of
molecular diffusion is usually negligible. However, at the micro-scale level, mixing
due to diffusion may not be neglected. Yang (1994) used a simplified dimensional
analysis and found that the characteristic mixing length scale and time scale for
chaotic mixing with diffusion were Lc =

√
D/λ and τ = ln(L0/Lc)/λ, respectively,

where λ is the Lyapunov exponent, L0 is the initial length scale, and D is the fluid
diffusion constant. If the characteristic length, Lc, is substituted into τ , we have

τ =
ln(L0/

√
D/λ)

λ
=

2 ln(L0/
√

D/λ)

2λ
=

ln
(
λL2

0/D
)

2λ
. (14)

However, an analysis of an advection–convection equation in a natural Lagrangian
coordinate system (Tang & Boozer 1996) suggested a dimensionless parameter for the
chaotic mixing:

Ω =
λL2

0

D
=

L2
0/D

1/λ
=

tD

tC
, (15)
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Parameters Reference Method I Rel. error

Lorenz attractor σ = 0, r = 28, b = 8/3 0.906 0.904 0.22%
Lorenz attractor σ = 6, r = 45.92, b = 4 1.50 1.504 0.27%
Rössler attractor a = b = 0.2, c = 5.7 0.0714 0.0711 0.04%

Table 1. Verification of the Lyapunov exponent computations calculated by method I using
reference values from Tufillaro et al. (1992).

where the diffusive mixing time, tD , is L2
0/D and the chaotic mixing time, tC , is 1/λ.

In fact, after rearranging the above equation, we can show that this dimensionless
parameter is the Péclet number (Levenspiel 1972):

Ω =
L2

0/D

1/λ
=

L0

tC

L0

D
=

VcL0

D
= Pe. (16)

Therefore, the chaotic mixing time, tC , can be simply expressed as

tC =
ln(Pe)

2λ
∼ ln(L0). (17)

This mixing time, tC , is proportional to the logarithm of the characteristic length scale,
L0. Therefore, we can use an estimation of the chaotic mixing time as a function of
Péclet number and Lyapunov exponent to design a micromixer for different types of
fluid. In comparison to the diffusive mixing time (tD ∼ L2

0), which is proportional
to the second power of the characteristic length scale, chaotic mixing is much more
efficient.

4. Nonlinear dynamic analysis of the micro chaotic mixer model: numerical
approach

Owing to the large nonlinear perturbation terms in equation (2a–c), it is impossible
to follow the approach presented in § 3 to find the Lyapunov exponents. Therefore,
we will use numerical methods in this section. Since a Lyapunov exponent analysis is
not trivial, two different methods that can be used to find the Lyapunov exponent(s)
will be considered in the following sections.

4.1. Lyapunov exponent analysis, method I: direct method

The calculation of the Lyapunov exponent is not trivial because, by definition, it is
a long-term average of the increase in the specific length. A practical way to find the
Lyapunov exponent is to split the ratio of final position to initial position, ‖X‖ / ‖x‖,
into a large number of small time steps. The time step can be set to 0.001 (Sprott
2003) so that the Runge–Kutta numerical integration method can be readily used. The
initial distance between the two particles is about three to four orders of magnitude
larger than the minimum precision of a computer. For example, for a typical double-
precision floating point in a Pentium PC with a 64-bit processor, we can have 15-digit
precision. Thus the initial separation can be set at about 10−12 to 10−11.

First, a computer code developed in Microsoft Visual C++ was applied to calculate
the Lyapunov exponents of well-known chaotic systems, e.g. the Lorenz attractor and
the Rosseler attractor (Tufillaro, Abbott & Reilly 1992) as listed in table 1 (the total
number of time steps is 108). All the relative errors between our numerical results
and reference values were less than 0.3 %.
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Figure 9. Comparison of the Lyapunov exponent of the micromixer model as a function of
the Strouhal number using two different methods: method I (dashed), method II (solid line
with the error bars). The error bar denotes the standard deviation of the 10 000 Lyapunov
exponents along the trajectory before the final time step. Initial condition (x, y) = (0, 0), initial
orientation = (1, 0), Vp = 1.5.

Next, the computer code was used to calculate the Lyapunov exponents of the
micromixer model described in § 3.1 for different frequencies (St = fW0/V0) and
a fixed amplitude (Vp/V0 = 1). The variables Wm and Ws were set equal to W0.
The Lyapunov exponent of the micromixer required about 100 million time steps
to converge while those of the Lorenz attractor only required 1 million time steps
according to the detailed convergence study in our previous work (Niu & Lee 2003a).
The maximum Lyapunov exponent as a function of the Strouhal number, calculated
using method I, is shown in figure 9. Note that method I can only be used to calculate
the maximum Lyapunov exponent, which is the most important one to characterize
chaotic mixing. However, method II in § 4.2 can be used to calculate all of the
Lyapunov exponents.

4.2. Lyapunov exponent analysis, method II: modified QR method

The Lyapunov exponents have been shown to be a generalization of the eigenvalues
at an equilibrium point (Parker & Chua 1989, p. 67):

λi ≡ lim
t→∞

1

t
ln |mi(t)| , i = 1, . . . , n, (18)

where mi(t) are the characteristic multipliers of the variational equation associated
with the solution, ϕt (xo,t), to the original dynamical system ẋ = f (x, t), x(t0) = x0,

dΦ

dt
= Dxf (x)Φ, Φo = I, (19)

where Dxf (x) is a tangent map, a matrix-valued function from the vector field, f (x)
and Φt(x0, t) ≡ Dx0φt (x0, t0). There is a series of published papers (Benettin et al.
1980; Dieci & van Vleck 1995; von Bremen, Udwadia & Proskurowshi 1997) that
discuss how to efficiently calculate the Lyapunov exponents using the above definition.
For example, the Lyapunov exponents can be computed by calculating sequence of
eigenvalues for the tangent map, Dxf (x), at different times. An efficient method, the
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Figure 10. Contour plot of the mean finite-time Lypaunov exponent of the micromixer
model on the (ω, Vp)-plane (V0 = 1).

QR-based algorithm for factorizing (an essential step in computing λi) the system
matrix, was recently reported (von Bremen et al. 1997). We developed a computer
program in Matlab using this new method and found three Lyapunov exponents
for the micromixer model: one zero, one positive, and one negative. The maximum
calculated Lyapunov exponent was consistent with those determined by method I
described in § 4.1. The occasional large discrepancies in the solid curve in figure 9 are
due to the relatively small number of time steps (20 000) used in method II. Note that
method I can be used to find the maximum Lyapunov exponent, while method II can
be used to find all the Lyapunov exponents. The maximum Lyapunov exponents as a
function of the Strouhal number were compared using these two methods in figure 9.
The optimal Strouhal number for mixing in this Lyapunov exponent curve was ∼1.

However, this St value is not consistent with the experimental results (figure 4).
According to the literature (Tang & Boozer 1996) and our previous analysis (Niu &
Lee 2003b), a finite-time Lyapunov exponent (FTLE), λ(τ ), is a better criterion to
characterize the mixing efficiency of micro mixers,

λ (τ ) = lim
|d X |→0

[
1

τ
ln

(
dx(τ )

dX

)]
. (20)

The FTLE will converge to an infinite-time LE, equation (3), as the time increases to
infinity. But the variation of the FTLE depends on the initial points and time steps.
For the two- or three-dimensional conservative systems that are often investigated, the
spatially averaged (or mean) FTLE, 〈λ〉, can be expressed as (Tang & Boozer 1996)

〈λ〉 = 〈λ̃(ξ )〉/t + 〈f (ξ, t)〉/
√

t + λ, (21)

where the first term depends only on the initial conditions, while the second term
also depends on time. Both terms tend to zero as t approaches infinity. Therefore,
the FTLE converges quickly to an infinite-time LE even though the second term can
induce some small fluctuations due to the dynamic properties of the system. Figure 10
shows the mean FTLE distribution of the active micromixer in the ω, Vp parameter



Time-periodic micro chaotic mixers 441

space (Niu & Lee 2003b), which can be used to select the optimal parameters, such
as the perturbation amplitude Vp and the operating frequency ω. An array of 50 by
50 points in one square area of the main microchannel at the inlet were used as the
initial conditions for the calculation of the mean FTLE in figure 10. The side of the
square area is the length that the fluid in the main microchannel moves at V0 (=1)
for one period, 1/f . The total number of time steps of integration is 10 000 for each
of the initial points with a time step of 0.001. The advantage of the FTLE analysis
is that it can decrease the CPU time by more than three orders of magnitude for our
micromixer. From this figure, the optimum Strouhal number is ∼0.5. This estimation
is better than those based on the infinite-time Lyapunov exponent analysis, which
implies that the FTLE is a better mixing index for our micromixer. The reason
for this result is that the FTLE accounts for both fluid stretching in terms of the
stretching rate and fluid folding in terms of curvature (Thiffeault 2004), while an
infinite-time Lyapunov exponent involves only fluid stretching.

4.3. Local bifurcation and finite-time Lyapunov exponent analyses

The existence of saddle points in the flow field is important. The saddle point in
a two-dimensional velocity field is a point in between the attraction and repulsion
of forces. An analysis of a saddle point can be very useful in understanding chaotic
dynamical systems. If the cycle time of the time-periodic forcing matches the residence
time of the fluid particle (the particle can easily travel to the saddle point), then the
mixing can be greatly enhanced. This is due to the frequent coincidence of the saddle
point and the transverse homoclinic or heteroclinic point (Tufillaro et al. 1992). Chaos
theory has shown that the existence of a single homoclinic or heteroclinic point forces
the existence of an infinite number of such points. This also gives rise to a homoclinic
tangle (Tabor 1989, p. 145). In addition, the optimal driving frequency can be found
by analysing the motion of a fluid particle travelling from the main channel to the
saddle point.

In order to clarify the locations of saddle points or similar critical points in our
micromixer model, we performed a local eigenvalue analysis as follows:

ẋ = f (x) = f (x0) +
∂f

∂x

∣∣∣∣
x0

(x − x0), (22)

where time t has been replaced by x3 for convenience. At the intersection of the main
and side channels (for clarity, we set Ws and Wm to be 1), the Jacobian matrix (∂f /∂x)
is [

∂f (x)

∂x

]
=

⎛
⎝ 0 −2V0x2 0

−2x1Vp cos(x3) 0 −Vp

(
1 − x2

1

)
sin(x3)

0 0 0

⎞
⎠. (23)

The eigenvalues for this matrix can be easily calculated as

0, ±2
√

V0x1x2 cos(x3).

As shown in figure 11, for the region (x1, x2) > 0 (x1,2 = 1 and x1,2 = −1), during
the time intervals 2nπ < ωt < (2n + 1/2)π and (2n + 3/2) π < ωt < 2 (n + 1)π
(n = 0, 1, 2, ..), (x1 , x2) are saddle points, while for the region x1x2 < 0 (x1 = −1,
x2 = 1 and x1 = 1, x2 = −1), (x1 , x2) are centre points. However, during the time
intervals (2n + 1/2)π < ωt < (2n + 3/2)π, the previous saddle and centre points
exchange roles with each other.
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Figure 11. Eigenvalue analysis of the micromixer model at the intersection of the main and
side channels: (a) when 2nπ < ωt < (2n + 1/2) π and (2n + 3/2)π < ωt < 2 (n + 1); and
(b) when (2n + 1/2)π < ωt < (2n + 3/2)π, (n = 0, 1, 2, . . .)

Note that the classification into centre and saddle points applies to the tangent
plane of the velocity field, not to the velocity field itself. Although the velocity field is
very regular at any time, the velocity gradient field with respect to x1, x2, and x3 (= t)
exhibits singular behaviour.

The optimal driving frequency for the best mixing enhancement in our proposed
micromixer was determined from the experiment in § 2 and from the Lyapunov
exponent analysis given in § 4.2. Here, we demonstrate that the optimal frequency
condition can be roughly estimated by considering the motion of the fluid particle
initially at (–Ws/2, 0) and finally at (Ws/2, Wm/2). Since this particle is in Region II
of figure 7(a), the governing equations for the particle trajectory are

dx1

dt
= V0(1 − (X2/Wm)2),

dx2

dt
= VP (1 − (X1/Ws)

2) cos(ω t). (24)

Because this set of ordinary differential equations is highly nonlinear, it is difficult to
find an analytical solution. Therefore, we simplified the velocity in the x1-direction by
assuming it was uniform, to obtain an approximated solution:

dx1

dt
= V0,

dx2

dt
= VP (1 − (X1/Ws)

2) cos(ω t), (25)

with initial conditions x1(0) = −Ws/2 and x2(0) = 0.
The solution to this simplified model can be easily found:

x1(t) = x1(0) + V0t = −Ws

2
+ V0t,

x2(t) = x2(0) +
∫ t

0
Vp cos(ω t) dt =

Vp

ω
sin(ω t).

}
(26)

Since we imposed the final location of the particle, (Ws/2, Wm/2), we can find the
particle travel time Tf ,

x1(Tf ) =
Ws

2
=

−Ws

2
+ V0Tf , Tf =

Ws

V0

. (27)

Substitution of this travel time into the x2 solution gives

Wm

2
=

Vp

ω
sin(ω Tf ) =

Vp

ω
sin

(
ω Ws

V0

)

or simply

St =
f Wm

Vp

=
1

π
sin(2π f Tf ). (28)
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When 2πf Tf = π/2 and Vp = V0, the above equation can be reduced to

St =
1

π
≈ 0.32. (29)

The optimal driving frequency estimated in this manner turns out to be close to the
experimental result (St ∼ 0.25) as shown in figure 6.

4.4. Poincaré section analysis

A Poincaré section analysis is commonly used to simplify the analysis of an n-
dimensional dynamic system by reducing it to n – 1 dimensions (Tufillaro et al. 1992).
For an integrable two-dimensional Hamiltonian system, such as a harmonic oscillator
without damping, the Poincaré section is simply a point in the phase space. Therefore,
periodic systems have a finite set of points. In contrast, chaotic systems have an
infinite number of points on a Poincaré section. Chaotic regions appear as a random
array of dots, while regular regions are indicated by the presence of well-defined
invariant curves in the flow. It is well known that Poincaré section analysis cannot
distinguish between quasi-periodic and chaotic motion. Therefore, the Lyapunov
exponent analysis was necessary to clarify this ambiguity.

For the micromixer model, the Poincaré section method can be applied by setting
an appropriate mapping. First, we set z = ω t and map the governing equation into an
autonomous system. For the trajectory of any initial point, we choose the Poincaré
section to be xn = n × pch, n = 1, 2, . . . . The trajectory will intersect these planes
successively at points P1, P2, . . . , Pn and define a mapping Pn+1 = Φ(Pn). With this
mapping, z goes to infinity as t increases. Since z only appears in the autonomous
system as a term of a sinusoidal function, we can define a new variable, α =
mod(z, 2π). Substituting α for z in the original system will not change its dynamic
characteristics. Therefore we have defined a new mapping, Pn(yn, αn). Because the
micromixer equation is a highly nonlinear system, we cannot obtain an explicit
formula for this mapping. However, each point can be calculated by integrating the
equation into the next Poincaré section plane (Niu & Lee 2003a).

Figure 12 shows Poincaré sections of the chaotic mixer for two perturbations with
the same operating frequency but different amplitudes. The dotted areas represent the
chaotic regions. A point that starts within this area will have the possibility of ending
up at any location within this area. Regions represented by circles and lines denote
quasi-periodic motions or torus; particles that start in these regions can only move in
a periodic or quasi-periodic manner. The Kolmogorov–Arnold–Mose (KAM) curves
separate the periodic region from the chaotic region (Ottino 1989; Tufillaro et al.
1992). Any trajectory of a point initiated in one attractor (the quasi-periodic area or
chaotic area) cannot cross over the KAM curves to another attractor. Therefore, the
KAM curves act as boundaries that prevent the mixing of fluid elements between the
two types of regions.

In figure 12(a), when Vp = 0.15, a large portion of the particles continued to
move periodically as indicated by the presence of wavy lines in the centre of the
channel. Only particles close to the channel walls became chaotic. But even inside
these supposedly chaotic regions, there existed small patches of periodic regions. As
the perturbation amplitude increased, these patches of periodic regions eventually
broke up further such that inner chaotic regions emerged from within, as shown
in figure 12(b). However, near the centre of the channel, the size of the dominant
periodic region was reduced, at first gradually. Later, it degenerated into a string of
periodic islands, as shown in figure 12(b). This string of islands acted as a barrier
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Figure 12. Poincaré sections of the micromixer model at different conditions: (a) the two
types of KAM curves formed at Vp = 0.15; and (b) the train of periodic islands that appeared
at Vp = 0.43.

that separated the upper and lower chaotic areas, preventing any exchanges between
the upper and lower regions.

Finally, when Vp increased beyond a critical value ∼0.42, the string of islands
broke up into isolated periodic patches and chaotic pathways appeared between these
islands. Under these circumstances, chaotic fluid elements on one side of the channel
could pass along these pathways to the other side, as shown in figure 12(b). As Vp

increased further, this chain of isolated islands not only shrank in size but also broke
into even smaller patches until they were all engulfed by the chaotic regions. From a
parametric study of Poincaré sections, we showed that the best mixing was achieved
when the amplitude of the side-channel perturbation was greater than 0.42. The
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Figure 13. Stable (grey line) and unstable manifold (black line) of a hyperbolic fixed point
on the Poincaré sections of the micromixer model at Vp = 0.471 and ω = 1.

critical Vp value found here is consistent with the result of the Lyapunov exponent
analysis.

The stable and unstable manifolds of a hyperbolic fixed point in a nonlinear
dynamical system have been shown to be an invariant sets (Ottino 1989). A single
transverse intersection between these manifolds is sufficient to produce chaotic
behaviour (Lichtenberg & Lieberman 1982). In classical chaotic mixing flows, such
as a tendril-whorl flow or blinking vortex flow (Khakhar et al. 1986), the stable and
unstable manifolds can be easily determined because there are analytical solutions for
fixed points in these flow fields. For our micromixer model, it is much more difficult
to determine the stable and unstable manifolds because we do not have analytical
solutions for the fixed points. The stable and unstable manifolds of a hyperbolic fixed
point, i.e. (α, y) = (4.40, –0.45), were found at Vp = 0.47 and ω = 1 (figure 13).
However, a comprehensive study of all the manifolds in the micromixer model is
beyond the scope of this paper.

5. Conclusions
A two-stream micromixer with time-periodic perturbations in the side channels was

fabricated using MEMS technology. Glycerine solutions with and without fluorescent
dye were used to characterize the micromixer chips, using fluorescence microscopy, at
different frequencies (or Strouhal numbers, St). An experimental mixing index based
on the standard deviation of the intensity of the pixels in the digital images was
introduced to quantify the mixing process. From a time-averaged mixing index versus
frequency plot, the best mixing occurred at St ∼ 0.25.

In addition, a kinematic model was constructed to track tens of thousands of
fluid particles in the channel. These particles exhibited a lobe-like structure pattern



446 Y.-K. Lee, C. Shih, P. Tabeling and C.-M. Ho

after the perturbation, which was consistent with the experimental results. Lyapunov
exponent, Poincaré section, and local bifurcation analyses were performed to provide
a quantitative indication of the chaotic mixing in our proposed micromixer model.

The Poincaré sections of the micromixer were used to identify regular and chaotic
regions for different perturbation amplitudes. Chaotic regions appeared as a random
array of dots while regular regions were indicated by the presence of well-defined
invariant curves in the flow. Since the chaotic system is usually very complicated, in
addition to Poincaré section analysis, a Lyapunov exponent analysis was also used in
this paper.

The existence of chaotic mixing in the micromixer model with time-periodic flow
perturbations in the side channels was confirmed by the computation of Lyapunov
exponents with two different numerical methods. From a Lyapunov exponent versus
frequency plot, the best long-term mixing occurred at St ∼ 1. However, a method
to achieve better mixing over a short time period is of more practical interest in
microfluidic applications. In addition, a local bifurcation analysis of the micromixer
model showed that the intersections of the main and side channels were saddle point
candidates. The distance between the fluid particles initially near these saddle points
diverged as time increased.

In the numerical model, the FTLE was found to be a maximum at St ∼ 0.5 while
the infinite-time Lyapunov exponent was a maximum at St = 1; on the other hand, in
the experiment, the mixing index was found to be a maximum at St = 0.25. One may
thus suggest that, in order to obtain appreciable mixing in the mixer we considered, it
is preferable to optimize the FTLE rather than the infinite-time Lyapunov exponent.
The former takes the dynamical processes at work more completely into account,
while the latter puts emphasis on the stretching of fluid elements which may not
imply mixing, as already mentioned by a number of authors (e.g. Ottino 1989).
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